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ABSTRACT
In this paper we develop a semi-parametric approach to model nonlinear 
relationships in serially correlated data. To illustrate the usefulness of this
approach, we apply it to a set of hourly electricity load data. This approach
takes into consideration the effect of temperature combined with those of time-
of-day and type-of-day via nonparametric estimation. In addition, an ARIMA
model is used to model the serial correlation in the data. An iterative back-
fitting algorithm is used to estimate the model. Post-sample forecasting 
performance is evaluated and comparative results are presented. Copyright
© 2006 John Wiley & Sons, Ltd.
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INTRODUCTION

Short-term forecasting of electricity loads plays an important role in the day-to-day planning and
operation of electricity power systems. The major operational activities such as plant scheduling,
load dispatching, security assessment and reserve capacity allocation rely heavily on short-term fore-
casts. It is widely recognized that even a marginal improvement in the short-term forecast can result
in significant gain in the reliability and profitability of power company operations.

It has been well recognized that a major portion of the total variation in electricity load time series
can be attributed to the strong periodic behavior in the data. Meteorological factors, such as 
temperature, humidity, and wind speed, are important sources of variation in electricity load. Among
these meteorological variables, temperature is found to be the most important in many studies (Al-
Zayer and Al-Ibrahim, 1996). It is also observed that the temperature–load relationship is highly
nonlinear. Engle et al. (1986) investigated this relationship and found it can be approximated by an
asymmetric V-shaped function with a minimum at around 65°F. This minimum represents the tran-
sition point between the needs for heating and cooling. Mendenhall and Sincich (1996) think this
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relationship may be better approximated by a U-shaped function because usually there is a temper-
ature range in which neither heating nor cooling is needed. Consequently, this approach requires two
transition points to be identified. One common method in practice is to transform temperature into
degree-days or degree-hours based on the transition points and use piecewise regression to model
the temperature effect (Gupta, 1985; Al-Zayer and Al-Ibrahim, 1996; Mendenhall and Sincich, 1996).
It is also found that the hourly temperature–load relationship may be affected by factors such as time
of day (Peirson and Henley, 1994), day of the week, season, location, income, price, holidays, and
so on. Some researchers model the temperature–load relationship individually for different intraday
period and day type (Ramanathan et al., 1997). Because of the nonlinear nature of the data, the iden-
tification of appropriate functional forms for different hour and day type is a complicated task.
Instead of trying to control all potential factors, one can adopt the more flexible, data-driven non-
parametric regression methods such as an artificial neural network (ANN) (Ho et al., 1992; Peng 
et al., 1992), smoothing splines (Engle et al., 1986; Harvey and Koopman, 1993), or other methods
based on more general basis functions (Smith, 2000). In many of the studies, the strong periodic pat-
terns in electricity load are modeled by decomposing the load into periodic components and includ-
ing corresponding periodic terms in the models. The serial correlation in the residuals is modeled
by relatively simple models (Engle et al., 1986; Smith, 2000). As an alternative, autoregressive inte-
grated moving average (ARIMA) models can be used to model the periodic patterns and the serial
correlation more adaptively.

In this paper, we combine the flexibility of nonparametric regression methods with the adaptive
nature of ARIMA models and consider an additive semi-parametric regression model: we use a 
nonparametric regression component to model the nonlinear relationship and an ARIMA component
to model the serial correlation in the noise. This model can be considered as the semi-parametric
counterpart of the linear transfer function model (Box et al., 1994), with the transfer function
modeled nonparametrically. As a result, this model is more flexible and can be used to model highly
nonlinear relationships of unknown functional form. By modeling the noise as an ARIMA model,
the serial correlation is removed and the transfer function can be estimated more efficiently. Addi-
tionally, the information about the correlation structure obtained in estimating the ARIMA parame-
ters can be used to improve the forecasting performance. We apply this modeling methodology on
a real electricity load dataset. This dataset contains the hourly electricity load data from 1998 to
2000 of an electric utility, whose service area is located in the eastern United States. The electricity
load under consideration is the total system load including industrial, residential and commercial
usage. In this study, for each hour of a certain type of the day (workday or non-workday), the tem-
perature effect is modeled individually by local polynomial regression, thus allowing the tempera-
ture effect to vary according to time of day and type of day. In this respect, the proposed model is
similar to the EGRV model developed by Engle, Granger, Ramanathan and Vahid-Arraghi (Electric
Power Research Institute, 1993). The EGRV model is a multi-equation regression model, and its use-
fulness was demonstrated by Ramanathan et al. (1997) in a comparative study. But because the pro-
posed model uses nonparametric regression methods to model the nonlinear temperature–load
relationship, it can approximate the relationship more appropriately. Additionally, because of the let-
the-data-speak-for-themselves property of nonparametric regression, the difficulty of identifying
nonlinear parametric models for the 48 potentially different temperature–load relationships for dif-
ferent hour/day types can be avoided. Cottet and Smith (2003) also used flexible functional forms
combined with Bayesian model averaging to model the temperature–load relationship. Their
approach was based on a few basis functions, while the local polynomial method used in this paper
is more general and is likely to produce more accurate estimates. In this study, the periodic load
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component and the serial correlation in the data are modeled by a multiplicative ARIMA model. We
use a modified backfitting algorithm (Hastie and Tibshitrani, 1991) for model estimation. We use the
data of the first two years (1998–1999) to build the model, and reserve the data of the third year to
evaluate the forecasting performance of the model.

This paper is organized as follows. The next section describes the data in more detail and pro-
vides a preliminary local polynomial fitting. The motivation of the proposed two-component model
is also given in this section. In the third section we introduce a semi-parametric two-component
model motivated by the preliminary study. We apply this algorithm to the load data and the results
are presented in the fourth section. In this section we also compare the within- and post-sample per-
formances of the model with that of the EGRV model used by Ramanathan et al. (1997). In the fifth
section we extend the nonparametric fitting to a two-dimensional model and fit load as a function
of both temperature and time of day. A summary is provided in the final section.

PRELIMINARY ANALYSIS

Data under consideration
Figure 1 shows the time series plot of the hourly electricity load from 1998 to 2000. We observe the
strong seasonality in the electricity usage: the loads are high in winter and summer, and low in spring
and fall.

In the service area under study, electricity is a main source of energy for heating in the winter and
cooling in the summer. Temperature is recorded hourly at four weather stations in the service area.
The temperature used in this study is a weighted average of these four hourly temperatures, and the
weights reflect the electricity usages in the areas covered by the four weather stations. Figure 2 is
the time series plot of the hourly average temperature.
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Figure 1. Time series plot of hourly load (1998–2000)
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Figure 3 is the scatter plot of hourly load against average temperature. Even though the 
temperature–load relationship revealed in this plot can be reasonably approximated by either a 
U-shaped or a V-shaped function, the relationship is complex.

In addition to the yearly seasonal pattern shown in Figure 1, it is well known that hourly load data
display daily and weekly periodic pattern (Harvey and Koopman, 1993; Smith, 2000). These peri-
odic patterns can be modeled by seasonal ARIMA models. However, a pure seasonal ARIMA model
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Figure 2. Time series plot of average temperature
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Figure 3. Load versus temperature
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without incorporating the temperature effect would not be adequate. We shall start our analysis by
studying the relationship between load and temperature.

From Figures 1 and 3, we see an unusual drop in electricity load around September 1999. A closer
investigation reveals that this drop was the result of hurricane activity. To alleviate the potential
impact of these extreme observations, we replaced the data with those of the following day. All sub-
sequent analysis reported in this paper are based on this adjusted dataset. We also performed the
same analysis based on the unadjusted data; the results obtained are similar to those based on 
the adjusted data. This is possibly due to that fact that the dataset is large and therefore the effect 
of a few adjusted data points is negligible.

Load and temperature
As mentioned earlier, the temperature–load relationship is highly nonlinear and is likely to be 
different according to many factors such as time of day and type of day. It is generally difficult to
identify an appropriate functional form that can account for all these factors. As a result, we adopt
the principle of ‘let-the-data-speak-for-themselves’ and use data-driven nonparametric smoothing
methods to model the temperature effect. Specifically we use the LOcally WEighted Scatterplot
Smoothing (LOWESS) algorithm by Cleveland (1979). The smoothing parameter l is selected using
the cross-validation (CV) algorithm (Wahba and Wold, 1975): 

(1)

where (Xi, Yi) is the ith observation, and l,[−i] is the estimated function omitting the ith observation
using bandwidth l. As a preliminary analysis, we fit the electricity load against temperature for the
years 1998–1999 using S-Plus function ‘lowess’. In this case, the optimal CV bandwidth is found
to be 0.10. The fitted curve is shown in the right panel of Figure 4.

The resulting root mean squared error (RMSE) of this model is 775.91. We also performed a post-
sample forecast using the data of year 2000 with this model. In this paper, actual temperature data
are used in all the forecasts. The RMSE for the post-sample forecasts is 893.18. (For notational 
simplicity, in what follows we will refer to the RMSE of the estimated model using data of years
1998–1999 as within-sample RMSE and the RMSE of the post-sample forecasts using data of year
2000 as post-sample RMSE.) As mentioned earlier, it is widely recognized in the load-forecasting
literature that electricity consumption is usually different for different days and times, even under
the same temperature. For example, under the same temperature, the hourly electricity usage at 
8:00 am could be very different from that of 8:00 pm. To see this, we plot load against average 
temperature for 8 am and 8 pm in Figure 5. We observe that the data in each subset have less 
variation than in Figure 3. Similar results are observed in other hours. This partially explains the
large RMSEs obtained in the above analysis. Better results could be obtained by taking the hour
effect into consideration and modeling the temperature–load relationship individually for different
hours. We also found the electricity usage pattern of workdays is different from that of non-work-
days. This is reflected in the two-cluster pattern shown in the left display of Figure 5. This pattern
is more pronounced in daytime hours than in night-time hours. Our study shows that non-workdays
(here including Saturdays, Sundays, holidays and the day before most of the holidays) behave sim-
ilarly, and we treat them the same in modeling. Hence we classify the days into two groups: workday
and non-workday. The holidays we considered in this study include New Year’s Day, Good Friday,
Memorial Day, Independence Day, Labor Day, Thanksgiving and Christmas.
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Figure 5. Workday/non-workday load against temperature for hours 8 and 20
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Figure 4. Load versus temperature (left) and estimated response function (right)
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Table I. Bandwidths for different hours of workdays and non-workdays

Workday Hour 1 2 3 4 5 6 7 8 9 10 11 12
l 0.19 0.13 0.19 0.22 0.22 0.25 0.25 0.28 0.25 0.22 0.16 0.22
Hour 13 14 15 16 17 18 19 20 21 22 23 24
l 0.28 0.31 0.28 0.25 0.28 0.28 0.13 0.25 0.19 0.22 0.19 0.19

Non- Hour 1 2 3 4 5 6 7 8 9 10 11 12
workday l 0.13 0.22 0.31 0.22 0.22 0.25 0.22 0.25 0.31 0.34 0.31 0.34

Hour 13 14 15 16 17 18 19 20 21 22 23 24
l 0.25 0.25 0.28 0.28 0.31 0.31 0.34 0.16 0.28 0.28 0.25 0.25

Based on the above observations, we split the data by time of day and type of day. Then we fit
each subset with a smooth function with LOWESS. The resulting overall within-sample RMSE is
369.59, and the post-sample RMSE is 539.92, which shows a significant improvement over the
single-curve model. The smoothing parameters selected by CV for each LOWESS fitting are given
in Table I.

The fitted curves of hours 2, 8, 14, 20 for workdays and non-workdays are shown in Figure 6.
From these curves, we see different patterns among workday/non-workday and different hours. For
example, the load usage levels of hours 8, 14, 20 are higher than that of hour 2 for workdays. Also,
the load levels of hours 8, 14, 20 of workdays are higher than those of the same hours for non-
workdays. Night-time hours (e.g., hour 2) are similar between workdays and non-workdays. This
verifies our previous observation.
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Figure 6. The estimated response functions of selected hours
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Serial correlation in the residuals
As all time series data, in this study serial correlation is an important issue. Figure 7 shows the auto-
correlation function (ACF) plot of the residual series after removing the nonparametric mean curve
estimated above. It is clear that autocorrelations are still prominent and show a strong periodicity of
24. To deal with this issue, we employ an ARIMA model to fit the residuals series. By examining
the sample ACF and partial ACF (Box et al., 1994), we identified a multiplicative ARIMA (1, 0, 0)
× (1, 1, 1)24 model, which can be written as

where et is the residual from the nonparametric model, at is assumed to be i.i.d. N(0, s 2
a ) and 

B is the backshift operator, Biet ≡ et−i. By introducing this time series model, the within-sample 
RMSE decreases from 369.59 to 149.40, and the post-sample RMSE is reduced from 539.92 to
156.76.

A TWO-COMPONENT SEMI-PARAMETRIC MODEL

The model
Based on the above analysis, we consider the following two-component model:

(2)

(3)

Here i = 1, . . . , 48 is the subscript denoting different time of day and type of day, Yij is the jth
load in sub-series i, Xij is the corresponding temperature and at follows i.i.d. N(0, s 2

a ). Note that we
use the time subscript t in equation (3) because we reassemble the time series in its original order
for the ARIMA model. This is a semi-parametric model with two components. The nonparametric
component (2) deals with the nonlinear temperature–load relationship, and the time series component
(3) deals with the serial correlation in the data.
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Figure 7. The ACF of LOWESS residuals
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Estimation
The two-step estimation in the previous section provides a consistent estimator of the model. Note
that, under a strong mixing condition for the residual series et, local polynomial estimator is asymp-
totically consistent in estimating the mean function fi(·) (Masry and Fan, 1997); therefore we expect
the LOWESS estimator to perform similarly. As a consequence, the estimated residuals t are also
consistent to the residual series et. The ARIMA model obtained using the estimated t yields con-
sistent estimates of the parameters, though the convergence rate will need a more careful study.

It is also important to note that when applying nonparametric smoothing methods to time series
data special care must be taken because of the serial correlation. In this study we use the leave-one-
out cross-validation method to select the bandwidth. Under the usual independence assumption, CV
produces the optimal bandwidth. Hart and Vieu (1990) showed that the leave-one-out CV method
remains optimal asymptotically under a strong mixing condition. However, in finite samples, the CV
bandwidth obtained under the independent assumption can be misleading when serial correlation is
present. In addition, the estimation will be more efficient when the serial correlation is taken into
consideration. Hence, we propose to estimate both components simultaneously.

The model we considered (equations 2 and 3) has two components: one is a nonparametric model
and the other is an ARIMA model. Our algorithm uses the backfitting idea (Hastie and Tibshitrani,
1991) and iteratively estimates the two components. Equation (3) can be written as

where ht is the linear projection of et onto the s-field generated by {es, s < t}. It can be estimated
by replacing the parameters and at with their estimated values in

Then, equation (2) becomes

where aij are independent N(0, s 2
a ). If hij is known, then estimating fi(·) becomes a standard 

nonparametric regression problem with independent noises. On the other hand, if fi(·) is given, 
then model (3) can be estimated using standard ARIMA procedures, with et replaced by Yij − fi(Xij).
Specifically, the proposed algorithm is given as follows:

• Let Yt be the original data. Set the initial values t = 0 and Zt = Yt − t.
• Do the following until convergence:

— Split Zt into sub-series Zij.
— Fit Zij = fi(Xij) + eij, obtain i(·).
— Combine i (Xij) into one series (Xt) and let êt = Yt − (Xt).
— Fit (1 − f1B)(1 − f2B24)(1 − B24) t = (1 − q1B24)at; obtain the residuals ât.
— Obtain the linear projection t = t − ât.
— Set Zt = Yt − t.

• After convergence, the fitted value of Yij is ij = i(Xij) + ij and the estimate of noise series at in
(3) is ât = Yt − t.Ŷ
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ĥĥ
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In each step, we used the leave-one-out cross-validation algorithm (1) to select the smoothing
parameter l, for the nonparametric estimation. By using the CV criterion, the nonparametric esti-
mation is essentially based on optimizing the post-sample forecasting performance. However, the
ARIMA estimation is based on minimizing the within-sample RMSE. As a consequence, the overall
RMSE may not necessarily decrease in each iteration, and the algorithm may not converge to a single
point. Our experience shows it usually converges to a limit cycle within a very small range which
bears no practical difference.

RESULTS ON THE ELECTRICITY LOAD DATA

The algorithm presented above was run iteratively, and we continuously check the within-sample
RMSEs for both the nonparametric component and the ARIMA component, as well as the estimated
coefficients of the ARIMA model. Here the RMSEs of the nonparametric component and the ARIMA
component are defined as

respectively. Figure 8 shows the evolution of within-sample RMSEs of the nonparametric and
ARIMA steps across iterations. As we can see, the algorithm converges at around iteration 200.

The smoothing parameters are reselected by CV periodically during iterations. After the first
several iterations the estimated smoothing parameters i (i = 1, . . . , 48) are quite stable and similar,
as shown in Table II. Because of the similarity between i, we averaged i at iteration 50 across the
48 curves and used it as the smoothing parameter in all subsequent iterations.

The within-sample RMSE at iteration 700 is 91.98. The fitted nonparametric curves of every 100
iterations up to iteration 700 for hours 8 and 20 are given in Figure 9. It is clear that the fitted curves
converge in shape and location as the number of iterations increases. The curves at iteration 1 are
very different from those of iteration 100, but when we run more iterations the curves become essen-
tially indistinguishable.

The ACF of the final residuals ât are given in Figure 10. From this figure, we can see that a 
periodic pattern of lag 168 is still present. This is because we did not take the weekly periodic pattern
into consideration in model 3.

To remedy this, we re-identified the time series model using the estimated nonparametric func-
tions at the final iteration and obtained the following model:

(4)

This refined model is used in the final iteration. The identification and estimation of this model
are carried out using the SCA software package developed by Liu et al. (1992).

The resulting within-sample RMSE is found to be 87.21. The estimates of the ARIMA model are
shown in Table III.

The ACF of the residuals of this model, which is shown in Figure 11, indicates that the residual
series is roughly a white noise process. (Note that in order to have a better presentation of the ACF
pattern we set the vertical scale of Figures 10 and 11 to (−0.3, 0.3) because of the small magnitude
of the ACF values).
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Table II. Bandwidths for selected workday hours

Hour 3 6 9 12 15 18 21 24

Iteration 1 0.19 0.25 0.25 0.22 0.28 0.28 0.19 0.19
Iteration 2 0.13 0.10 0.13 0.10 0.16 0.19 0.10 0.16
Iteration 20 0.13 0.10 0.13 0.10 0.16 0.19 0.10 0.16
Iteration 50 0.16 0.13 0.19 0.16 0.16 0.16 0.10 0.16
Iteration 100 0.16 0.13 0.19 0.16 0.16 0.16 0.10 0.16

Nonparametric Step

number of iterations

R
M

S
E

0 200 400 600

10
0

15
0

20
0

25
0

30
0

35
0

ARIMA Step

number of iterations

R
M

S
E

0 200 400 600

90
10

0
11

0
12

0
13

0
14

0
15

0

Figure 8. The within-sample RMSE versus number of iterations

The fitted nonparametric curves at the final iteration for each subset are given in Figures 12 and
13.

Using the identified two-component model, we perform a post-sample forecast using data of year
2000. As mentioned previously, actual temperature data are used in the forecast. We find that the
post-sample RMSE is 93.37. We also calculate the mean absolute percentage error (MAPE), which 

is defined as , where Yt is the actual observation and t is the 

corresponding forecast. The within- and post-sample MAPEs are found to be 1.0094% and 1.0114%,
respectively.
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Table III. The model estimation of equation (4)

Variable Value t-Value Type Order SE

f1 1.5340 69.40 AR 1 0.0221
f2 −0.5504 −25.40 AR 2 0.0217
f3 0.8880 135.57 AR 168 0.0065
q1 0.3250 12.91 MA 1 0.0252
q2 0.7762 156.54 MA 24 0.0050
q3 0.7753 85.02 MA 168 0.0091

To visualize the forecasting performance of the proposed model, the post-sample forecasts in 
one winter week (1/10/00–1/16/00), one summer week (8/7/00–8/13/00) and one holiday period
(12/22/00–12/31/00) are plotted in Figures 14–16.

The EGRV model (Electric Power Research Institute, 1993) performs very well in short-term elec-
tricity forecasting. It outperformed a wide range of alternative models in a comparative forecasting
experiment hosted by the Puget Sound Power and Light Company (Ramanathan et al., 1997). The
EGRV model is a multi-equation model. In this model multiple regression functions with a dynamic
error structure as well as adaptive adjustments are fit individually for each hour in weekday and
weekend. In the proposed model we also treat different hour and day type individually, but we adopt
nonparametric regression methods to capture the temperature–load relationship. The EGRV selects
variables from 31 candidate variables of four categories: deterministic (e.g., year trend, binary vari-
ables for months, Monday, Friday and day after holiday), temperature-related (e.g., temperature and
its square, temperature peaks, moving average of temperature), load-related (e.g., current load) and
past error. For more details about the EGRV model, please refer to Ramanathan et al. (1997). Here
we compare the within- and post-sample RMSE and MAPE of the EGRV model with those of the
proposed two-component model (which will be called the semi-parametric transfer function model
(SPTF) in what follows). Actual temperature is used in both forecasts. The results are summarized
in Table IV.

As shown in Table IV, even though the EGRV model has better within-sample performance, the
SPTF model has better post-sample forecasting performance than the EGRV model. We further
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compare the post-sample forecasting performances of these two models in individual hours and days
of the week. The comparison of MAPE is summarized in Table V, in which ‘1’s denote the cases
when the SPTF model performs better (i.e., has smaller MAPE) than the EGRV model, ‘0’s other-
wise. The column sums denote the number of hours in which the SPTF model outperforms the EGRV
model for each day of the week, and the row sums denote the number of days in which the SPTF
model outperforms the EGRV model for each hour of the day. Overall, we found that in 50% (i.e.,
84 out of 168) of the cases the SPTF model outperforms the EGRV model. However, it is interest-
ing to see that the SPTF model outperforms the EGRV model mostly in the usage-intensive hours
(namely, almost all cases in 7 am, 10 am to 2 pm, and 7 pm to 10 pm). The same comparison of
RMSEs shows a similar pattern; the details are omitted here.

Table IV. The overall performances of the SPTF and the EGRV models

Within RMSE Post RMSE Within MAPE Post MAPE

SPTF 87.21 93.37 1.009% 1.011%
EGRV 82.64 108.21 0.918% 1.110%
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Remark: Note that the previous results were obtained by setting the initial value of t to zero and
estimating the nonparametric functions first. One can also start the iteration with the other compo-
nent; e.g., set (·) = 0 and estimate the ARIMA model first. If the iterative procedure has a stable
solution, both approaches should provide similar solutions. To verify this, we ran the procedure again
for 700 iterations, starting with t = 0, and fit the ARIMA model first. Figure 17 shows the within-
sample and post-sample RMSE for each iteration. Again, we see that the RMSEs stabilize at approxi-
mately iteration 200, and the ARIMA RMSE and nonparametric RMSE stabilize at about the same
level. The within-sample RMSE at iteration 700 is 92.74 and MAPE is 1.096%, similar to what we
have obtained before. Again, to take care of the weekly effect, we used model (4) in the final itera-
tion. The resulting within-sample RMSE and MAPE are 87.99 and 1.019%, respectively. Based on
this refined model, we also performed the post-sample forecast using data of year 2000. The post-
sample RMSE and MAPE are 93.99 and 1.104%, respectively. Hence changing the order of fitting
gives us roughly the same result, which suggests that the procedure does converge in this case.

The above post-sample forecast is essentially one-step-ahead forecast. Forecasts of such short
horizon are important for decisions such as immediate dispatch or system stability. But other 

ĥ

f̂

ĥ
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decisions such as plant scheduling and reserve capacity allocation usually require longer-horizon
forecasts. The proposed approach can be used for this purpose. To illustrate this, we use the pro-
posed approach to make 24-step (i.e., one-day)-ahead forecasts. Note that because of the nonlinear
nature of the problem we need to identify a different model for the different forecasting horizon. We
identify the following two-component model:

(5)

(6)

This model is estimated using the modified backfitting algorithm described above. To save space,
the detailed estimation results are not given here. A post-sample 24-step-ahead forecast is performed
using the identified model and the data of year 2000. Similarly, as a benchmark, the EGRV model
is used to perform a post-sample 24-step-ahead forecast. The within- and post-sample performances
of the two models are given in Table VI. We can see that in this case the SPTF model has better
overall performance than the EGRV model.
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A TWO-DIMENSIONAL EXTENSION

The estimated one-dimensional functions (Figures 12 and 13) are summarized in three-dimensional
plots shown in Figures 18 and 19. The changes between neighboring curves are small and smooth.
This observation leads us to consider the two-dimensional version of the proposed model:

(7)

(8)

where wt ∈ {1, 2} indicates whether observation t belongs to a workday or a non-workday and Tt =
{t mod 24} represents the time of the day for observation t. The function f is a two-dimensional
smooth function with Tt being a circular variable (i.e. hour 1 and hour 24 are considered to be neigh-
bors). As a consequence, we consider two two-dimensional functions, one for workdays and one for
non-workdays, instead of considering all 48 non-parametric functions in (2). The estimation is carried
out with the LOESS procedure (Cleveland and Devlin, 1988), which is the multidimensional version
of LOWESS. We used the GCV criteria (Craven and Wahba, 1979) to select the bandwidth. Note
that the LOESS bandwidth is based on Euclidean distance and treats all dimensions symmetrically.
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However, in this dataset data are more densely distributed along the temperature dimension than
along the time dimension, so different amounts of smoothing may be required on different dimen-
sions. One way to achieve this is to increase the time scale to a multiple of the original scale; i.e.,
define T*t = m ∗ Tt, (m ≥ 1) and substitute T*t for Tt in equation (7). m can be treated as an unknown
parameter and selected together with the bandwidth l, by GCV, i.e.:

where RSS is the residual sum of squares of the model and H is the smoothing matrix. The band-
width l and m selected by GCV are 0.05 and 5, respectively. Repeat the entire analysis, including
the final refinement using model (4); the resulting within-sample and post-sample RMSE are 91.93
and 102.95, respectively. Figures 20 and 21 show the estimated two-dimensional surfaces. The two-
dimensional model performance is slightly inferior to that of the one-dimensional model. One pos-
sible explanation can be seen in Figures 12 and 13, where the data range for each curve can be very 
different. This ‘boundary effect’ of the nonparametric estimation may cause part of the accuracy
problem.
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SUMMARY AND DISCUSSION

In this paper we considered a semi-parametric two-component modeling procedure for nonlinear
time series data. The model consists of a nonparametric component and a parametric ARIMA
component. The model estimation is carried out using a modified backfitting procedure. Both 
one-dimensional and two-dimensional models are considered. The proposed modeling methodology
reveals a possibility of modeling data of the form Yt = f(Xt) + et, where f(·) is an unknown smooth
function and et follows an ARIMA model. Because f(·) is modeled nonparametrically, this model is
very flexible and can be used to model highly nonlinear relationships of unknown functional form.
By modeling et explicitly, the serial correlation is removed and the transfer function f(·) can be esti-
mated more efficiently; additionally, the estimated ARIMA parameters can be used to improve fore-
casting performance. We applied this modeling procedure to model and forecast hourly electricity

Table VI. The 24-step-ahead performance of the SPTF and the EGRV
models

Within RMSE Post RMSE Within MAPE Post MAPE

SPTF 96.29 108.61 1.12% 1.18%
EGRV 250.23 388.79 2.82% 3.74%

Table V. Comparison between the SPTF model the and EGRV model

Hour Mon. Tue. Wed. Thur. Fri. Sat. Sun. Row total

1 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 1 2
3 1 0 0 0 0 1 1 3
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 1 1
6 0 0 0 1 0 0 0 1
7 1 1 1 1 1 0 0 5
8 0 1 0 0 0 0 0 1
9 0 0 0 0 0 1 0 1

10 1 1 1 1 1 1 1 7
11 1 1 1 1 1 1 1 7
12 1 1 1 1 1 1 1 7
13 1 1 1 1 1 1 1 7
14 1 0 1 1 1 0 1 5
15 0 0 1 1 0 1 0 3
16 1 1 0 0 0 0 1 3
17 0 0 0 0 0 0 0 0
18 0 0 0 0 0 1 0 1
19 1 1 1 1 1 0 1 6
20 1 1 1 1 1 1 1 7
21 1 1 1 1 1 1 1 7
22 1 1 1 1 1 1 1 7
23 0 0 0 1 0 0 0 1
24 0 0 0 0 0 1 1 2

Col. total 12 11 12 13 10 12 14 84
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load and found it performed very well. The proposed approach also has some disadvantages and
remaining issues. First, it is more computationally intensive in estimation than its parametric coun-
terparts; this is partly due to the nonparametric nature of the model and partly due to the iterative
nature of the estimating algorithm. Second, because of the nonlinear nature of the model, the multi-
step-ahead forecasts are more sophisticated; usually different models are needed for different fore-
casting horizons. Nonparametric methods with parametric functional forms, such as regression
splines, can provide better solutions for these issues but the local asymptotic properties are more
difficult to establish. Third, like other nonparametric methods, the proposed approach suffers from
the curse of dimensionality (e.g., Hastie and Tibshitrani, 1991), which practically restricts the model
to low dimensions. We need to consider more restrictive models, such as the additive model, to solve
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Figure 20. The nonparametric estimated surface for workdasys
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this problem. Finally, the theoretical properties of the model and the estimation procedure still require
more careful and rigorous study.
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